

MATH FOR THE TALENTED AND GIFTED

Math for the
Talented and Gifted

By James Paicopolos
December 2018
Copyright December 2018
Worksheets may be compied as needed

GIFTED MATH
The gifted child's understanding of Math, criticalthinking ability, and mathematical interests can range far beyond his or her grade level.

Grades
K-7

Math for the
 Talented and
 Gifted Child
 Series One:
 Numeration and Operations

Introduction

Congratulations on getting a copy of this book Math for the Talented and Gifted Child, This series was developed for Classroom and Home school programs. It explores counting, addition, subtraction, multiplication and division in a fun, innovative way. Although this book is designed for exceptionally bright children, it can also be used by teachers in the classroom or by parents at home.

Jim Paicopolos has taught in Mexico, USA and China. He observed firsthand how Chinese education differs from American Education. While teaching in Nanjing Child, he first learned from the Chinese Public School teachers, he worked with, the Chinese way of teaching math. According a report published by the International Association for the Evaluation of Educational Achievement, third- graders in China are almost equivalent to U.S. high school students in math and science. Yes, it's true, eight year-olds in China are doing what our 14-18 year-old American High School students are doing in Algebra and Geometry. With the goal of closing this learning gap, this book integrates the best Chinese educational practices with the best American educational practices.

You may be wondering, how do you teach a 5-8 year-old advanced math concepts?

Confucius in his teachings, states that a teacher guides his students but does not pull them along; the teacher encourages them to go ahead and does not chastise them; The teacher opens the way, but does not lead them to the concept. Guiding the child without pulling or shoving the child along is the process of learning gentle; urging without suppression and makes the process of learning easy; thus opening the way without leading the student to the next chapter in the math book but instead makes the students think for themselves. When the process of learning is made gentle and easy and the students are encouraged do and to think for himself/herself, we may the call the teacher a master of teaching

Unfortunately too often instead education "it top to bottom" where the classroom teacher has little input into her own classroom and instead must follow the what the powers that are all knowing and seeing. Is the teacher dares to listen to the sound of a different drummer, they risk and fear getting a bad evaluation. In reality the best teachers, who really know how to teach math so that learning really takes place are "put out to pasture" while corporate driven education supplants innovation an true teaching ability.
Only when one comes to be dissatisfied with his own knowledge, and only through teaching of others does one come to realize the uncomfortable inadequacy of his knowledge.

It is when the child not the teacher becomes dissatisfied with his own knowledge, then he is able to realizes that the trouble lies with himself, and realizing the uncomfortable inadequacy of his knowledge, one then feels stimulated to improve himself.
son, and has developed lesson plans that deliver the advanced content in a developmentally appropriate manner. Hide and Seek Math, Jump to Numbe Placement, and Speed Math are just a few of the many exciting and physically active ways to teach young children their curriculum.

Overall, this book does not require excessive amounts of study. It is simply written, and is not made to be difficult. Just because your child is having difficulty doing his/ her math homework does not mean that they are not talented in math. There are children who are brilliant in math, yet refuse to do the daily routine work at school. Boredom, and lack of a challenge often emerge as the culprits of this refusal behavior. Our series aims to change all of that!

It has been often noted that Children are very good at math. There are some a logical reason for this. The language of Chinese and the use of symbols is can be said makes math a whole lot easier to learn.

For example:the number go after are said literally in Chinese as $10+1,10+2,10+3 \ldots$ So the Chinese child, when learning to count are literally learning to add at the same time. The concept of using symbols to represent expressions can seen in the use of chinese charecters, and Chinese being a tonal language gives yet another advantage.

As the lessons here are being taught.The examples here are idea and concept input.

Teach each lesson until your student masters the concepts before moving on.

Math is a language of it's on self. Until the student masters the language, they will struggle if you move onto the new concept.

Math refusal usually often occurs when the child does not know what you are saying. A lot of math computer programs will put in a lot of politically.

Chapter 1 Numeration, Counting, and Ordinal Numbers

Chapter 2 Arithmetic Operations: Addition
Chapter 3 Arithmetic Operations: Subtraction
Chapter 4 Arithmetic Operations: Multiplication
Chapter 5 Arithmetic Operations: Division
Chapter 6 Place Value

Chapter 7 Graphs

Chapter 8 Lesson Plan Suggestions

Chapter I

Numeration

Numeration means Counting. That is all it means, just counting.
Zero means nothing. Here is a zero: 0 . Yes " 0 " means nothing. A circle represents nothing in the number line.
Numbers in front of a zero are positive. Numbers before the zero are negative, and have a minus sign in front of them.

Another way of saying that is: numbers to the right of the zero are positive, and numbers to the left of the zero are negative.

64

This is the positive Number 64 because there is no minus sign before it.

And

This is the Negative Number 64 because there is a minus sign
$64-64=0$
And
$64+-64=0$
And
$64+(-64)=0$

But
$64+(+64)=128$

And
$64+64=128$

But wait !!!!!!!!!!!!!!!!!!!!!!!!!!!
What is this below?
$64--64=128$
$64-(-64)=128$
Two negatives equals a positive.
And
$-64+-64=-128$
and the opposite would be
$64+64=128$

Math Work

Say the numbers one to ten out loud. Write or trace the numbers one to ten neatly in your note book.

12345678910

One, two, three, four, five, six, seven, eight, nine, ten

Say the numbers "negative one" to "negative ten" out loud. Also known as "minus one" to "minus 10". Write or trace the numbers "minus one" to "minus ten" in your note book.
$\begin{array}{llllllllll}-1 & -2 & -3 & -4 & -5 & -6 & -7 & -8 & -9 & -10\end{array}$

Negative one, negative two, negative three, negative four, negative five, negative six, negative seven, negative eight, negative nine, negative ten

You can do it! It's easy with practice.

We are using ten numbers, also called Base Ten, because there are only
ten different number symbols to write: 0123456789

Here are some different examples: $\begin{array}{lllll}21 & 39 & 5672 & 120 & 247\end{array}$

604 1,249

Numbers go on forever. That's called infinity. Very cool.

Now count the numbers 1-50 out loud. Great job!

Here are the next numbers to say 5 times.
Numeration!
Just do it, you are doing
$10100 \quad 1000 \quad 10,000 \quad 100,000 \quad 1,000,000$
ten one-hundred one thousand ten thousand one hundred thousand one million

Remember, we are using Base 10, because there are only 10 different number symbols

Count your fingers to see if you really have ten!!!!!!!!!!!!!!!!!!!!!!!!!!!

Yeah, you are counting using base ten! Only ten number symbols. No more. Look again: 0123456789

So, it is normal to count using our fingers, using one after the other like this:

 $1,2,3,4,5,6,7,8,9,10$Remember, zero means nothing. No objects. Nothing to count!!!
"None", "empty" and "not anything" mean the same thing as zero. They're synonyms.

Now let's count by 2 's:
$\begin{array}{lllllllll}2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18\end{array} 20$

Now count by 5 's:

Now count by 10's:

$10,20,30,40,50,60,70,80$, 90, 100

Now count by 9 's:

Wait! Look! The 9's are special, because when you add each number, it equals 9 !
Check it out:
$9 \quad 9+0=9$
$181+8=9$
$272+7=9$
$363+6=9$
$45 \quad 4+5=9$
$54 \quad 5+4=9$
$63 \quad 6+3=9$
$72 \quad 7+2=9$

See, all these numbers add up to 9! Cool!!

Now let's count by tens.

As you can see, numbers mean "how many!"

Count your fingers! Count books! Count pencils, count pens, count desks, count pennies, count quarters, count dollars. Count whatever you want! It's fun!

If you practice counting, you'll get better and better! You're on your way!

Numbers mean "how many", and when you count objects, you can put them in order

This is called Ordinal Numbers!

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 First Second Third Fourth Fifth Sixth Seventh Eight Ninth Tenth

Ordinal Numbers are the words you use to place numbers in a certain order.

Here are some examples
"I want to be first (1st) to go on the ride."
"The girl was the fourth (4th) person to win the spelling bee."
"The boy counted up to the fifth (5th) planet, Jupiter."

Now let's Practice using Ordinal Numbers.

Create your own sentences using ordinal numbers, and say them out loud You can do it!

Once you are done tracing numbers, practice writing numbers 1-10 in your notebook.
Then you can practice writing the numbers 1-50 in your notebook!

Practice makes perfect!

Addition means combining numbers together. That's all it means.

Hold up 1 finger. Now hold up another finger. You have 2 fingers you're holding up. You did it! That's addition! It's that simple

Now get some crayons.

Place 1 crayon on the table, now place another crayon on the table

You have two crayons. That's $1+1=2$
Now let's place 2 crayons on the table. Now place another 2 crayons on the table

Count how many there are altogether

$1,2,3,4$. You did it! Two crayons plus two crayons equals 4 crayons.
The way we write that is $2+2=4$

Try placing 3 crayons on the table. Now place three more crayons on the table.
Do you see six crayons altogether? You did it again!

You have six crayons altogether, because $3+3=6$.

Now practice with crayons, fingers, pencils or whatever you want to combine and add together. You're doing addition!

Here are some number combinations to try:

Here, look at this number line to see how easy it is:

$\left\langle\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|} & & & & & & & & & & & & & & \\ \hline\end{array}\right.$

$1+1=2$ Place your finger on the number 1 . Now move one to the right. That's 2
$1+2=3$ Place your finger on the number one. Now move two places to the right. That's 3
$1+3=4$ Place your finger on the number 1 . Now move three places to the right. That's 4

You will always be moving up the number line when adding.
Another way of saying that is you'll be moving to the right.
The answer you get is called the sum.

Now lets's try larger numbers.
$10+10=$
10 First add the zeros. The zero column is the "ones" place. $\frac{+10}{20}$ Then add the ones. The ones column is the "tens" place.

When you're adding numbers with more then one digit, you always start with the numbers furthest to the right.

$30+30=\quad 30$ First add the zeros. $0+0=0$
+30 Then add the threes. $3+3=6$
60
$40+40=$

40 First add the zeros. $0+0=0$

 $+\frac{40}{80}$ Then add the fours. $4+4=8$50 First add the zeros. $0+0=0$

Now let's try different number combinations.

Always start with the numbers furthest to the right, then move over to the left one at a time. You can do it!

$12+20=$	$\begin{array}{r} 12 \\ +20 \\ \hline \end{array}$	First add two plus zero. $2+0=2$ Then add the one and two. $1+2=3$
	32	
$15+10=$	15	First add the five and zero. $5+0=5$
	+10	Then add the one and one. $1+1=2$
$18+30=$	18	First add the eight and zero. $8+0=8$
	+30	Then add the one and three. $1+3=4$
$19+40=$		FIrst add the nine and zero. $9+0=9$

19 Flrst add the nine and zero. $9+0=9$ +40 Then add the one and four. $1+4=5$
+50 Then add the fives. $5+5=10$ 100

Now let's try some more challenging numbers.

Subtraction is the opposite of addition

Look at this number line

The numbers before zero are negative and the numbers after zero are positive. They have the minus sign - and not the + sign

OR

5 Pennies minus 3 pennies equals two pennies

5 pennies -3 pennies $=2$

OR
And
$5-3=2$

Practice
20
-10
10

OPPOSITES Cancel out in Math
+5 and -5 are opposites

Opposites cancel out $5+-5=0 \quad 2+-2=0 \quad 30+-30=0$
$5+-5=0$ is the same as $5-5=0$

Is the same as $-5+5=0$

Borrowing

It is OK to borrow from another number.

LOOK!

25

- 18

Now look at these:

a. 5 tens 2 ones $\rightarrow 4$ tens 12 ones		
Take away 1 ten, 7 ones.	13	
	5	z
	1	7
	3	5
Do these Subtraction Problems! Remember you have to borrow from the tens column c. 6 tens 0 ones $\rightarrow 5$ tens 10 ones		
	5	10
Take away 3 tens, 9 ones.	6	0
	3	9

You can Check Your answer by adding the answer from the take away numbers. They should always add up to the numbers on top.

| d.90
 -35 | e.82
 -25 |
| :--- | :--- | :--- |
| j.55
 -17 | k.31
 -18 |

Regrouping or Borrowing Subtraction Problems

Do these now for Practice.

Regrouping sometimes required.

Multiplying is just a simple way of adding the same numbers over and ove again.

Multiplication is "Repeat Addition"

For example, say you have two groups of blocks as pictured below.

$2+2=4$
And
$2 \times 2=4$

To find the total number of blocks，you could add the total blocks like this：

$$
\begin{gathered}
2+2+2+2=8 \\
\text { Or } \\
\mathbf{4} \times \mathbf{2}=\mathbf{8} \text { or } \mathbf{2} \times \mathbf{4}=\mathbf{8}
\end{gathered}
$$

Because we are doing repeat Addition！

$$
\begin{aligned}
& 3+3=6 \\
& 3 \times 2=6
\end{aligned}
$$

图図 图図
图図 图
囷図 图図
Count or Multiply and you get the same Answer

$$
\begin{gathered}
4 \times 2=8 \\
2+2+2+2=8
\end{gathered}
$$

Picture the same way by using the＂x＂sign：
$4 \times 2=8$

Zero time Zero Equals Zero
 Because Nothing times Nothing is Nothing
 Any number times Nothing is Nothing!!!!!!!!!!!!!!!!!!
 Nothing is Nothing no matter how many times you multiply nothing!

Now lets count like this....
0000000000
12345678910
2468101214161820

112233445566778899110

Counting like this is an easy way to build the times table !!!!
$0 \times 0=0$
$0 \times 1=0$
$0 \times 2=0$
$0 \times 3=0$
$0 \times 5=0$
$0 \times 6=0$
$0 \times 7=0$
$0 \times 8=0$
$0 \times 9=0$
$0 \times 10=0$

Any number times zero is always zero $1 \times 1=$

1
$1 \times 2=2$
$1 \times 2=3$
$1 \times 3=4$
$1 \times 5=5$
$1 \times 6=6$
$1 \times 7=7$
$1 \times 8=8$
$1 \times 9=9$
$1 \times 10=10$

Any Number times one is always the same number. Easy!!!!
$1 \times 2=2$
$2 \times 2=4$
$3 \times 2=6$
$4 \times 2=8$
$5 \times 2=10$
$6 \times 2=12$
$7 \times 2=14$
$8 \times 2=16$
$9 \times 2=18$
$10 \times 2=20$

Multiplying by 2 's is like counting by 2
$1 \times 5=5$
$2 \times 5=10$
$3 \times 5=15$
$4 \times 5=20$
$5 \times 5=25$
$6 \times 5=30$
x $5=35$
$8 \times 5=40$
$9 \times 5=45$
$0 \times 5=50$

Multiplying by 5 's is like counting by 5 's.
$1 \times 9=9 \quad 0+9=9$
$2 \times 9=18 \quad 1+8=9$
$3 \times 9=27 \quad 2+7=9$
$4 \times 9=36 \quad 3+6=9$
$5 \times 9=45 \quad 4+5=9$
$6 \times 9=54 \quad 5+4=9$
$7 \times 9=63 \quad 6+3=9$
$8 \times 9=72 \quad 7+2=9$
$9 \times 9=81 \quad 8+1=9$
$10 \times 9=90 \quad 9+0=9$

You write the numbers down put a plus sign and then you write the numbers down.

That is how you know the 9's tables.
$0 \times 10=0$
$1 \times 10=10$
$2 \times 10=20$
$3 \times 10=30$
$4 \times 10=40$
$5 \times 10=50$
$6 \times 10=60$
$7 \times 10=70$
$8 \times 10=80$
$9 \times 10=90$
$10 \times 10=100$

Just count by ten's and you have the ten's tables. 1020304050
60708090100
$0 \times 11=0$
$1 \times 11=11$
$2 \times 11=22$
$3 \times 11=33$
$4 \times 11=44$
$5 \times 11=55$
$6 \times 11=66$
$7 \times 11=77$
$8 \times 11=88$
$9 \times 11=99$
$10 \times 11=110$

You count by 11's and you have the 11 's tables.

(11 $22 \sqrt{33} \sqrt[44]{55} 66778899$

110

Square Root

Each of the little squares equals an area of 1 .

1	1	1	1	1	1
1	1	1	1	1	1
1	1	1	1	1	1
1	1	1	1	1	1
1	1	1	1	1	1
1	1	1	1	1	1

There are 36 Squares in this box. Six squares equal each side. So the square root of this square is 6 .

$$
\begin{array}{ll}
\sqrt{ } 36=6 & 6 \times 6=36 \\
\sqrt{ } 25=5 & 5 \times 5=25 \\
\sqrt{ } 16=4 & 4 \times 4=16 \\
\sqrt{ } 9=3 & 3 \times 3=9 \\
\sqrt{ } 4=2 & 2 \times 2=4 \\
\sqrt{ } 1=1 & 1 \times 1=1 \\
\sqrt{ } 0=0 & 0 \times 0=0
\end{array}
$$

$$
C=2 \pi \mathrm{r}
$$

If the Radius is 10

$C=2 \times 3.141 \times 10$

$C=62.82$
$\mathrm{A}=\pi \mathrm{r}^{2}$

Area of a Circle is equal to $\pi \mathrm{x}$ Radius Squared.
$\mathrm{A}=3.141 \times 5^{2}=78.52$

And this is called a Sphere.

The Earth is a Sphere and so is the Sun and all the Planets.

The formula for the Area of a Rectangle is

Area $=$ Base X Height

$$
A=B X H
$$

Or

$$
A=b h
$$

To Get The Perimeter of a Rectangle You have to go all the way around the rectangle and add the numbers up.

The Perimeter of this rectangle is 10.
If the base of this rectangle is 10
And the height is 5 then What is the Perimeter?

What is the Area?

Answer for Area is below.
Area equals base x height or $A=B \times H \quad A=10 \times 5=50$.

ANS for Perimeter.

Perimeter equals Side $1+$ side $2+$ side $3+$ side 4 .

$$
P=5+10+5+10=30
$$

The answer for the perimeter of this rectangle is 30 .

It can Look Like This.

Or it can look like this.

The longest side is called the Hypotenuse or C.

$$
C=V A^{2}+B^{2}
$$

This is a Cube.

The area of a cube is Lenth X Width X Height

So if the Length of each side is 2

Then $L \times W \times H=2 \times 2 \times 2=8$

This is an acute angle.

This is an obtuse angle.

This is a right angle or a 90 degree angle.

$\sqrt{36}=6$

This is a square root formular.

$e=m c^{2}$

Energy is equal to mass times the speed of light.

This is a sign wave

Where:

- $m=$ relativistic mass, i.e. $\underline{\text { mass at the speed it is }}$
travelling
- $c=$ speed of light.
- $E=$ energy

This is a sine wave.
$222+234=456$
234-222 = 12
$324 \times 22=7128$
888 / 444 = 2

Numbers can be added

And
Numbers can be multiplied
And
Numbers can be divided

Division and Fractions

This is a fraction
But it can also be looked at a division problem.

$15 / 5=3$

15 divided by $5=3$
$15 \div 5=3$
$5 \times 3=15$
Long Division can look like this.
$1 0 \longdiv { 1 0 0 0 } \quad 1 0 \longdiv { 1 0 0 0 }$
$\begin{array}{llllllll}1 / 3 & 2 / 3 & 1 / 5 & 2 / 5 & 3 / 5 & 4 / 5\end{array}$
$\begin{array}{llllll}4 / 5 & 1 / 6 & 5 / 6 & 1 / 8 & 3 / 8 & 5 / 8 \\ \text { Or this }\end{array}$ Or this.

Which fraction is greater?$\frac{5}{7}$

You can see which one has more colored Spaces so it must be greater.

Try this one on your own.

Now try this one.

By Counting the shapes in each Circle, you can see which one is greater and which one is less.

Look at the fractions and matching pictures below.
$\frac{3}{3}$

1.

2.

a. $|||\mid$
4.

$\underline{25}-5$
68
$\begin{array}{llll}1 & 1 & 2 \\ & 3 & 2 & 4\end{array}$
1.

$$
{ }_{5}^{2}\left(\frac{2}{4}\right)^{-1} 4
$$

$\begin{array}{llll}2 & & \\ & 3^{1} & 4 & 4\end{array}$

4.

$$
\begin{array}{llll}
\underline{1} & & 1 \underline{2} \\
& 3 & 2 & 4
\end{array}
$$

1.

$\left(\frac{7}{8}\right)$
$\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}$
$\begin{array}{lll}4 & 2 \\ 6 & 3\end{array}$
2. $\square \begin{aligned} & 1 \\ & 2\end{aligned}$

$\begin{array}{lll}3 \underset{2}{2} & & 3 \\ 4 & & 6\end{array}$
4.

Four-fourths

Four-fourths

Algebra

Here are the basics of Algebra. Algebra can be seen as a language, that we learn. It is also likens to an intuitive approach like Arithmetic.
lbook +1 book make Two books.
So $1 \mathrm{x}+1 \mathrm{x}=2 \mathrm{x}$ or $\mathrm{x}+\mathrm{x}=2 \mathrm{x}$
For things to be equal, they should be equal

$$
\begin{aligned}
& 1+5=5+1 \\
& 5+x=x+5
\end{aligned}
$$

Now you can try solving this algebraic expression.
$5+0$ is the same as $\mathrm{O}+\mathrm{X}$
$\mathrm{X}=$?
Terms and Factors
A term in an algebraic expression. A term can be an expression involving letters and/or numbers (these are called factors) and multiplied together
Example 1
The algebraic expression
5x
is an example of one single term. It has factors 5 and x .
The 5 is called the coefficient of the term and the x is a variable.
6 or any number is also called the coefficient.
The Letters X Y and Z are called Variables.
Other letters are usually called constants.
A variable is a number subject to change.
A constant is a number that stays the same.

What does 5 X really mean. It really means 5 times X or 5 xX or $5{ }^{*} \mathrm{X}$
$5 \times \mathrm{X}=25$
So X has to be the number 5 because no other number will fit

Some more rules of Algebra

The sum of two unknown numbers can be written as

Algebra is a way of working with symbols and number to figureout a mathematics problem It can be looked at a question that uses numbers.

Even a five year old in a way uses algebra.
We use Algebra in everday life.
It answers can answer questions like these:
If Alberto has 15 coins and needs 20 coins to get a game, how many more coins do he need to get the game?

If Thomas has 6 bottles of water and he drinds 1 bottles in a day, how many days will the water last?

If you start running a race at a speed of 10 ten miles an hour, and your friend starts running 5 minutes later at a speed of 20 miles an hour, when will your friend catch up to you?

Algebra can help figure out things when building a bridge, making a house, and doing computer programming

An integer can be any number, negative or positive, that does not have a decimal point or fraction
Here is an example of integers on the number line. See that there are no fractions or decimals.

$\stackrel{-10}{\stackrel{10}{4}}$| -9 |
| :---: |

This Number Line between the integers -10 and +10 but it could go in either direction forever. When number go on and on and never end, we can call it the word infinity.
This number line shows the numbers from -10 to (positive) 10. Notice the arrows on either side to show that the numbers continue in both directions even though they are not shown on the line

Absolute value

The absolute value of a number is the distance from zero (0) to infinity on the digit line. So no matter what signs, the numbers are always positive. It can also be called modulus. The absolute value of a number is its distance from zero (0) on the digit line

This action ignores the "+" or "-" sign of the number because the distance in math is never negative. You can identify the absolute value of a number by writing a number between two vertical bars, called the absolute value bracket: | number |.

A useful way to think about absolute value is to link it to the railroad track. If you are standing on railway track, more specifically on any railway track, and marking that point to zero, the railway relationship on the left will represent a negative number and the railway relationship on the right will represent a positive number.

On the negative side of the railway, the number -7 is 7 units away from zero. So, the following is true, | On the negative side of the railway, the number -7 is 7 units away from zero. So, the following is true,
7 | The number 16 is 16 units away from zero on the positive side of the railway track So | 16 | The number 0 is 0 units from zero on the railway track. So $|0|=0$ Therefore, the absolute value of any number is positive or zero.

Absolute Value
The absolute value of a number is its distance from zero (0) on a number line to infinity.
So the numbers will always be positive regardless of the signs.

It can also be called modulus

The absolute value of a number is its distance from zero (0) on a number line. This action ignores the " + " or " "" sign of a number because distance in mathematics is never negative.

You identify an absolute value of a number by writing the number between two vertical bars referred to as absolute value brackets: |number|.

$4|-127|=127$
$5|5 / 10|=5 / 10$ or $1 / 2$ or one half.
$6|12|=12$
$7 \quad|0|=0$
$8|-4+10|=-6$
$9|19+2|=21$
$10|-15+11|=4$
$11|12-85|=73$
$12|7|+3=10$
$13|13|-21=-8$
$14|-4|-41=-37$
$1513+|-2|=15$
$16 \quad 19+|-3|=21$
$17|1+6|+5=12$
$18-9+1+|16|=8$
$1916+|-3-1|=20$
$2022-|2(-5)+8|=20$

Congradulations This is the End of this Math Book..

Proof

